Основные принципы полимеразной цепной реакции (ПЦР) — II

Круг основных вопросов

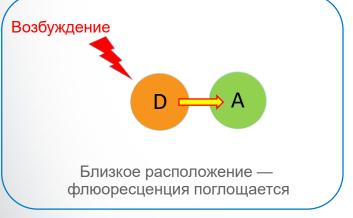
Основные принципы ПЦР.	Основные принципы молекулярной биологии	
Часть І	Что представляет собой ПЦР	
	Фазы ПЦР	
Основные принципы ПЦР Часть II	Что представляет собой ПЦР в реальном времени	
	Качественная ПЦР в реальном времени	
	Количественная ПЦР в реальном времени	
Основные принципы ПЦР.	Что такое температура плавления	
Часть III	Анализ кривых плавления	
2017-2020 Cepheid — Все права защищены — 301-8526-RU, ред. В, ноябрь 2020	Ceph	

ПЦР в реальном времени (ПЦР-РВ)

- ПЦР в реальном времени является обычным процессом ПЦР, при котором используют дополнительный олигонуклеотид, помеченный флюоресцирующей молекулой. Его называют <u>зондом</u>.
- В качестве зонда используют одноцепочечную ДНК, последовательность нуклеотидов в которой совпадает с целевой последовательностью
- При активации флюоресцентного зонда гибридизацией он излучает флюоресцентный сигнал

Зонд

- Одна копия целевой ДНК активирует одну молекулу зонда, поэтому флюоресцентный сигнал прямо пропорционален числу созданных копий целевой ДНК
- Примеры зондов, используемых для ПЦР в реальном времени: TaqMan, молекулярные маяки, зонды-скорпионы ...

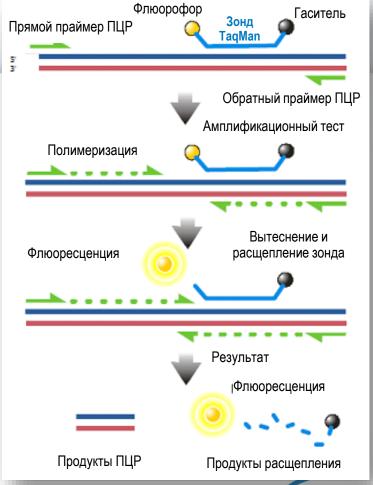


Технология FRET:

- Резонансный перенос энергии флюоресценции (Fluorescence Resonance Energy Transfer, FRET) является зависимым от расстояния взаимодействием двух молекул красителя.
- Энергия возбуждения передается от молекулы-донора к молекуле-акцептору без излучения фотона.

Принцип FRET имеет много применений, в том числе в ПЦР.

D=донор/репортер А=акцептор/гаситель

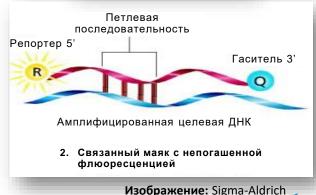


- Зонд TaqMan является коротким олигонуклеотидным зондом (длиной 15–30 оснований), меченым флюоресцентным красителем на 5' конце и гасителем на 3' конце.
- Пока репортер и гаситель расположены рядом, гаситель поглощает флюоресценцию репортера
- В качестве зонда используют последовательность ДНК, прикрепляющуюся к целевой последовательности
- В фазе элонгации ПЦР-полимераза Таф расщепляет зонд
- Это приводит к физическому разделению репортера и гасителя, после чего флюоресцентный сигнал излучается и может быть измерен

1 свободный флюорофор/амплик он ДНК

Репортер Гаситель

Прямой праймер



Прямой праймер

- Зонд молекулярный маяк является молекулой, имеющей форму шпильки и состоящей из флюорофора (репортера) и гасителя
- Последовательность зонда имеет длину примерно 17-21 оснований. Последовательность стебля должна содержать много гуанина и цитозина (более 80 % всей последовательности) для формирования стабильного дуплекса длиной 5-8 оснований
- При свободном нахождении этой молекулы в растворе ее два конца сближены и флюоресценция гасится.
- В присутствии целевой ДНК зонд прикрепляется к целевой последовательности и флюорофор отделяется от гасителя, что приводит к излучению флюоресцентного сигнала

Прямой праймер

Зонд FRET

- Зонды FRET являются парами олигонуклеотидов с флюорофором-донором и флюорофором-акцептором
- Возбуждаемый прибором донор возбуждает акцептор, который излучает флюоресцентный сигнал.
 Эта флюоресценция обнаруживается прибором
- Когда зонды находятся в свободном состоянии в растворе, этот феномен не происходит из-за отсутствия близости.
- В фазе отжига ПЦР зонды тесно сближаются, что создает условия для передачи энергии и излучения флюоресцентного сигнала, который может быть измерен

3' Donor Fluorophore (F₀)

Fb

Oligo Probe 1 5' Acceptor Fluorophore (F_A)

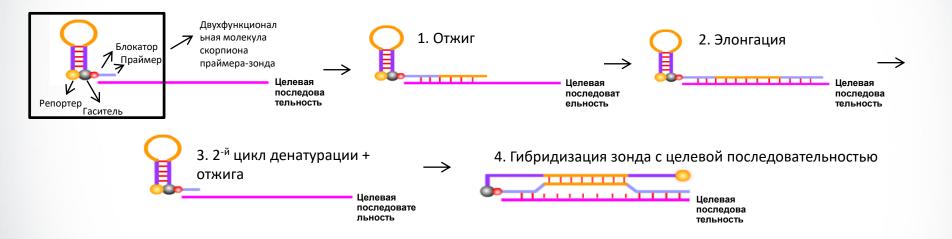
Fb

Oligo Probe 2

1. Probes in solution emit low fluorescence

2. Emission through fluorescence resonance energy transfer

Изображение: Sigma-Aldrich


Неточные молекулярные маяки

• Неточные («sloppy») молекулярные маяки обладают сравнительно длинными (примерно 30–40 оснований) последовательностями зондов, что позволяет им образовывать гибриды с ампликонами многих различных видов, несмотря на наличие несовпадающих пар оснований.

Зонд-скорпион

Последовательность зонда должна иметь длину 17–27 оснований.

Изменения флюоресценции во время ПЦР

 Кривая амплификация состоит из 4 частей:

Определение Ct основано на пороге

- Пороговый цикл (Ct) первый цикл, в ходе которого флюоресценция достигает заданного порогового уровня
- -Этот цикл может быть выражен дробным числом

Критерии валидации ПЦР: Диапазон Сt и флюоресценция в конечной точке

- Диапазон Сt
 - -Это диапазон допустимых значений Ct
 - -Он находится между Ct_{мин} и Ct_{макс}
- Флюоресценция в конечной точке
 - -Значение флюоресценции в конце ПЦР (плато)

В тестах Xpert валидация кривой амплификации за пределами диапазона не выполняется: результат не может быть выдан

Мультиплексная ПЦР

- Мультиплексная ПЦР это одновременная амплификация нескольких целевых последовательностей ДНК
 - Каждая целевая последовательность имеет собственный набор. праймеров
 - -Каждую целевую последовательность количественно определяют по ее собственному зонду, причем каждый помечен отдельным красителем и детекция выполняется на его конкретной длине волны
- При планировании мультиплексной ПЦР следует избегать конкуренции между мишенями

Обнаружение нескольких красителей — 6 красителей до 2020 г.

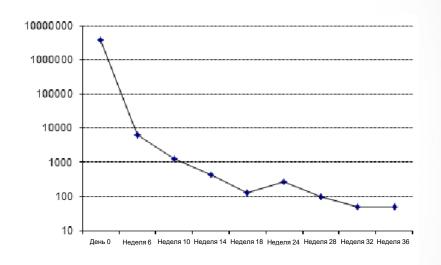
- Выбирают различные красители (репортеры)
- Они имеют различные длины волн возбуждения и излучения

Анализируемое вещество	Репортер	Возбужд ение (нм)	Излучение (нм)	
Целевая последовательность 1	Краситель 1	375–405	420–480	
Целевая последовательность 2	Краситель 2	450–495	510–535	
Целевая последовательность 3	Краситель 3	500–550	565–590	
Целевая последовательность 4			665–685	
SPC	Краситель 6	630–650	>700	
Целевая последовательность 5	Краситель 5	555–590	606–650	

Обнаружение нескольких красителей — теперь 10 красителей

- •Выбирают различные красители (репортеры)
- •Они имеют различные длины волн возбуждения и излучения

		Детектирование iCore				
	Оптические каналы iCore	Синий + ИК (420–477 нм + > 700 нм)	Зеленый + глубокий красный (510–535 нм + 660-680 нм)	Желтый (565–585 нм)	Красный (620–645 нм)	
Возбуждение iCore	УФ (400 нм)	CF1				
	Синий (470 нм)		FAM	CF7 (FAM-CF3)	CF9	
	Зеленый (520 нм)	CF10 (CF3-CF6)		A532 (CF3)	CF8 (CF3-CF4)	
	Желтый (574–584 нм)				TxR (CF4)	
	Красный (635 нм)	CF6	A647 (CF5)			

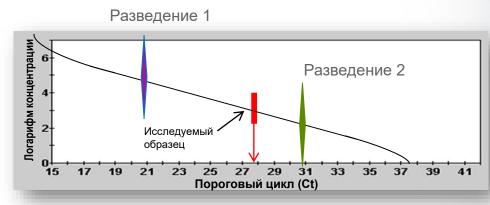


Количественное определение

 Абсолютное количественное определение: результат выдается в единицах концентрации (копии/мл, МЕ/мл и др.):

тесты Xpert HIV-1 VL и Xpert HCV

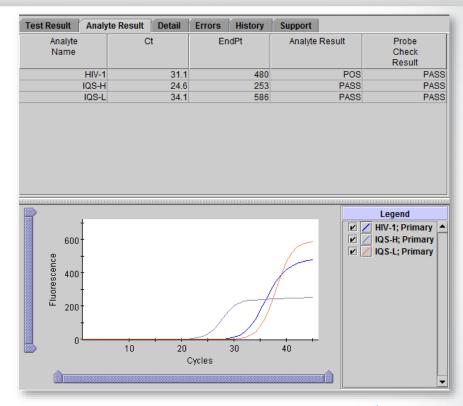
• Относительное количественное определение: результат выдается в виде отношения: тест Xpert BCR-ABL



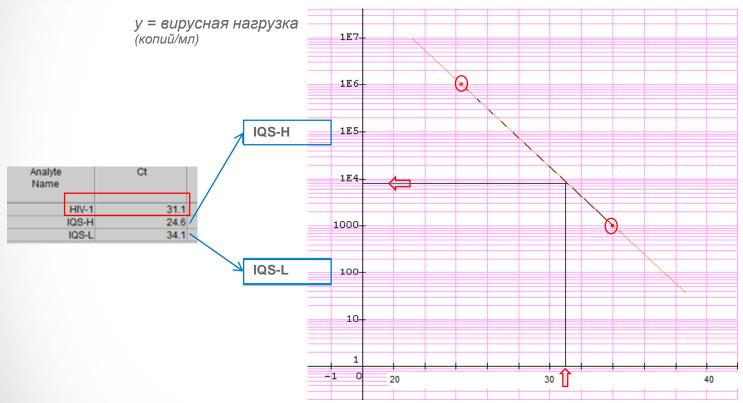
Снижение вирусной нагрузки HIV-1 VL при APT (другой метод, не GeneXpert). График: hivbook.com

Абсолютное количественное определение с применением внешних стандартов

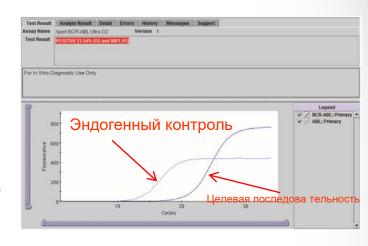
- 1. Готовят разведения образца, содержащего известную концентрацию целевой ДНК.
- 2. Эти разведения анализируют одновременно с исследуемым образцом, каждый в отдельной пробирке
- 3. Для каждого разведения сообщают Сt
- 4. Строят стандартную кривую связи Сt и концентрации
- 5. Величину Сt исследуемого образца используют для определения его концентрации методом экстраполяции по стандартной кривой


В линейном диапазоне концентраций достаточно использовать 2 стандарта

Абсолютное количественное определение с применением внутренних стандартов.


В тесте Xpert HIV-1 VL: Для определения концентрации в образце используют 2 стандарта:

- 1 стандарт с высокой концентрацией (IQS-H) = 10⁶ копий/мл
- 1 стандарт с низкой концентрацией (IQS-L) = 10³ копий/мл
- Программное обеспечение GeneXpert вычислит концентрацию исследуемого образца на основании значений Ct и известной концентрации каждого стандарта и Ct исследуемого образца.


Вычисление концентрации образца

Относительное количественное определение методом ПЦР в реальном времени (пример: Xpert BCR-ABL)

- Относительное количественное определение измеряет уровень целевой последовательности и выражает его в единицах относительно уровня внутреннего контроля (референсного гена)
- Этот референсный ген может быть эндогенным. В этом случае его можно также использовать для контроля достаточности объема пробы, использованной в тесте.
- По причине низкой вариабельности эндогенного контроля его можно также использовать как индикатор наличия ингибитора ПЦР.

ПОЛОЖИТЕЛЬНЫЙ [1,54% (IS) и MR 1,81] (POSITIVE [1.54% (IS) and MR1.81])

Пример результата теста Xpert BCR-ABL Ultra

Заключение

Особенности метода ПЦР-РВ:

- быстрота
- чувствительность
- ТОЧНОСТЬ
- простота выполнения
- может быть количественным

Наука каждый год приносит нам удивительные факты и дарит великолепные устройства.

Кери Маллис (Kary Mullis)

